Enhancement of osteogenesis by concanavalin A in human bone marrow mesenchymal stem cell cultures.
نویسندگان
چکیده
This study investigates concanavalin A (ConA) as a novel factor that may enhance osteogenesis of mesenchymal stem cells (MSCs) in vitro. Various factors, such as cytokine bone morphogenetic protein-2 (BMP-2), have been studied for their possible promotion of MSC osteogenesis in vivo and in vitro. However, the factor that might be safer, more effective, and less expensive than these has not been determined. We therefore cultured human MSCs in osteogenic medium in the presence or absence of ConA, and used calcium assays to compare the effects of ConA and BMP-2 on MSC calcification. We also used enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction (PCR) to evaluate the expression levels of bone-specific markers. ConA and BMP-2 enhanced calcification with comparable effectiveness. The combination of ConA and BMP-2 further enhanced calcification slightly but significantly. ConA also increased osteocalcin and BMP-2 protein levels in MSC culture medium. Furthermore, ConA increased osteocalcin, RUNX2, BMP-2, BMP-4, and BMP-6 mRNA expression levels. However, the gene expression pattern of ConA-stimulated MSCs was different from that of MSCs stimulated by BMP-2. Together, these results suggest that ConA and BMP-2 enhance MSC osteogenesis via different pathways. ConA-induced bone formation in MSC cultures may be useful in regenerative medicine or tissue engineering in clinical studies, as well as in basic research on bone formation.
منابع مشابه
Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملEffect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کاملEx vivo Expansion and Differentiation of Mesenchymal Stem Cells from Goat Bone Marrow
Objective(s) Mesenchymal stem cells (MSCs) from large animals as goat which is genetically more closely related to human have rarely been gained attentions. The present study tried to isolate and characterize MSCs from goat bone marrow. Materials and Methods Fibroblastic cells appeared in goat marrow cell culture were expanded through several subcultures. Passaged-3 cells were then different...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملGrowth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton's jelly of umbilical cord on PBMCs
Objective(s):Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of human MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ) of human umbilical cord. The current study has compared immu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of artificial organs
دوره 31 8 شماره
صفحات -
تاریخ انتشار 2008